Jump to content
  • To Search the Seeq Knowledgebase:

    button_seeq-knowledgebase.png.ec0acc75c6f5b14c9e2e09a6e4fc8d12.png.4643472239090d47c54cbcd358bd485f.png

Search the Community

Showing results for tags 'limits'.

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Community Technical Forums
    • Tips & Tricks
    • General Seeq Discussions
    • Seeq Data Lab
    • Seeq Developer Club
    • Seeq Admin Forum
    • Feature Requests

Categories

  • Seeq FAQs
  • Online Manual
    • General Information

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Company


Title


Level of Seeq User

Found 2 results

  1. Summary: Many of our users monitor process variables on some periodic frequency and are interested in a quick visual way of noting when a process variable is outside some limits. Perhaps you have multiple tiers of limits indicating violations of operating envelopes or violations of operating limits, and are interested in creating a visualization like that shown below. Solution: Method 1: Boundaries Tool One method to do this involves using the boundaries tool. This tool is discussed in Step 3 of this seeq.org post, and results in a graphic like that shown below. Some frequently asked questions around the above method are: Is there a way to make the different levels of boundaries different colors? Is there a way to color the section outside of the limits rather than inside of the limits? Method 2: Scorecard Metrics in Trend View Step 1. Load the signal you are interested in monitoring as well as the limits into the display pane. The limits can be added directly from the historian, or if they do not exist in the historian they can be created using Seeq Formula. Step 2. Open a new Scorecard Metric from the tools panel, create a simple scorecard metric on your signal of interest, with no statistic. Click the "+" icon to optionally enter thresholds, and add the threshold color limits that you are interested in visualizing. Note that the thresholds input in the boundary tool can be constant (entering a numeric value) or variable, selecting a signal or scalar.
  2. Use Case Background Commonly, engineers are interested in calculating limits on a signal based upon the average and standard deviation. Additionally, there may be different modes of operation during which the performance - and limits - is different. This post describes how to develop mode based boundaries for a process signal to identify deviations from the normal or expected behavior. Mode Conditions In this example, I am interested in calculating boundaries on a Compressor Power signal based upon the mode of operation in a Compressor Stage Signal. (Note: These signals are from Example>Cooling Tower 1> Area A of the Example data shipped with each Seeq installation.) The first step is to identify the 3 stages of operation (Off, Running 1 Compressor, Running 2 Compressors) by performing a Value Search on the Compressor Stage signal: Average Compressor Power using Formula Next, I can use the Formula tool to calculate an Average Compressor Power signal, using the following variables and syntax: Variables Name Item Type $Series Compressor Power Signal $High Compressor High Condition $Low Compressor Low Condition $Off Compressor Off Condition Formula // Identify a reference capsule over which the statistic is calculated. You can think of this as the golden batch period or the period in time that we know that the system was operating properly. $refPeriod = capsule("2016-04-01T00:00:00Z","2016-05-01T00:00:00Z") //Cut the single continuous time series signal (Compressor Power) into sections which correspond to the different modes of operation. This gives us three intermediate time series signals which only contain data for the three distinct modes of operation. $highSeries = $series.within($high) $lowSeries = $series.within($low) $offSeries = $series.within($off) // Create three intermediate time series signals, one for each mode of operation. Find the average value of the time series signal during the reference time period for each mode of operation, and then turn that scalar into a time series signal which only exists in the appropriate mode of operation $highAve = $highSeries.average($refPeriod).tosignal().within($high) $lowAve = $lowSeries.average($refPeriod).tosignal().within($low) $offAve = $offSeries.average($refPeriod).tosignal().within($off) // Splice together the three time series signals into a single signal and step interpolate the $finalSeries $finalSeries = $highAve.splice($lowAve,$low,false).splice($offAve,$off,false).toStep() return $finalSeries Boundaries Using Formula To start, let's calculate the upper boundary as the average + 3 std dev. I can use the Formula tool to calculate this upper boundary using the following variables and syntax. Variables Name Item Type $Series Compressor Power Signal $High Compressor High Condition $Low Compressor Low Condition $Off Compressor Off Condition Formula $refPeriod = capsule("2016-04-01T00:00:00Z","2016-05-01T00:00:00Z") $highSeries = $series.within($high) $lowSeries = $series.within($low) $offSeries = $series.within($off) $highAve = $highSeries.average($refPeriod).tosignal().within($high) $highStdDev = $highSeries.standarddeviation($refPeriod).tosignal().within($high) $highBoundary = $highAve + $highStdDev*3 $lowAve = $lowSeries.average($refPeriod).tosignal().within($low) $lowStdDev = $lowSeries.standarddeviation($refPeriod).tosignal().within($low) $lowBoundary = $lowAve + $lowStdDev*3 $offAve = $offSeries.average($refPeriod).tosignal().within($off) $offStdDev = $offSeries.standarddeviation($refPeriod).tosignal().within($off) $offBoundary = $offAve + $offStdDev*3 $finalSeries = $highBoundary.splice($lowBoundary,$low,false).splice($offBoundary,$off,false).toStep() return $finalSeries Similarly, I can calculate the lower boundary as average - 3 std dev using the following variables and Formula syntax. Variables Name Item Type $Series Compressor Power Signal $High Compressor High Condition $Low Compressor Low Condition $Off Compressor Off Condition Formula $refPeriod = capsule("2016-04-01T00:00:00Z","2016-05-01T00:00:00Z") $highSeries = $series.within($high) $lowSeries = $series.within($low) $offSeries = $series.within($off) $highAve = $highSeries.average($refPeriod).tosignal().within($high) $highStdDev = $highSeries.standarddeviation($refPeriod).tosignal().within($high) $highBoundary = $highAve - $highStdDev*3 $lowAve = $lowSeries.average($refPeriod).tosignal().within($low) $lowStdDev = $lowSeries.standarddeviation($refPeriod).tosignal().within($low) $lowBoundary = $lowAve - $lowStdDev*3 $offAve = $offSeries.average($refPeriod).tosignal().within($off) $offStdDev = $offSeries.standarddeviation($refPeriod).tosignal().within($off) $offBoundary = $offAve - $offStdDev*3 $finalSeries = $highBoundary.splice($lowBoundary,$low,false).splice($offBoundary,$off,false).toStep() return $finalSeries Final Results Executing these 3 formulas results in 3 new time series signals: Average Compressor Power, Compressor Power +3sd and Compressor Power -3sd. The Customize menu in the Details Pane can be used to adjust how these signals are visualized on the screen: Content Verified DEC2023
×
×
  • Create New...