Jump to content
  • To Search the Seeq Knowledgebase:

    button_seeq-knowledgebase.png.ec0acc75c6f5b14c9e2e09a6e4fc8d12.png.4643472239090d47c54cbcd358bd485f.png

Search the Community

Showing results for tags 'mode'.

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • Community Technical Forums
    • Tips & Tricks
    • General Seeq Discussions
    • Seeq Data Lab
    • Seeq Developer Club
    • Seeq Admin Forum
    • Feature Requests

Categories

  • Seeq FAQs
  • Online Manual
    • General Information

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Company


Title


Level of Seeq User

Found 2 results

  1. Background In this Use Case, a user created a condition to identify when the compressor is running. During each Compressor Running capsule, the compressor operates in a variety of modes. The user would like a summary of the modes of operation for each capsule in the form of a new signal that reports all modes for each capsule (i.e. Transition;Stage 1;Transition;Stage 2;Transition, Stage 1;Transition). Method 1. The first step is to resample the string value to only have data points at the value changes. It's possible the signal is already sampled this way, but if it is not, use the following Formula syntax to create a "compressed" signal: $stringSignal.tocondition().setMaximumDuration(3d).transformToSamples($capsule -> sample($capsule.getStart(), $capsule.getProperty('Value')), 4d) 2. Now, you can create a signal that concatenates the string values during each capsule. This is achieved using the following Formula syntax: $compressorRunning.setmaximumduration(10d).transformToSamples($cap-> sample( $cap.getStart(), $compressedStringSignal.toGroup($cap).reduce("", ($s, $capsule) -> $s + $capsule.getvalue())), 7d).toStep()
  2. Use Case Background Commonly, engineers are interested in calculating limits on a signal based upon the average and standard deviation. Additionally, there may be different modes of operation during which the performance - and limits - is different. This post describes how to develop mode based boundaries for a process signal to identify deviations from the normal or expected behavior. Mode Conditions In this example, I am interested in calculating boundaries on a Compressor Power signal based upon the mode of operation in a Compressor Stage Signal. (Note: These signals are from Example>Cooling Tower 1> Area A of the Example data shipped with each Seeq installation.) The first step is to identify the 3 stages of operation (Off, Running 1 Compressor, Running 2 Compressors) by performing a Value Search on the Compressor Stage signal: Average Compressor Power using Formula Next, I can use the Formula tool to calculate an Average Compressor Power signal, using the following variables and syntax: Variables Name Item Type $Series Compressor Power Signal $High Compressor High Condition $Low Compressor Low Condition $Off Compressor Off Condition Formula // Identify a reference capsule over which the statistic is calculated. You can think of this as the golden batch period or the period in time that we know that the system was operating properly. $refPeriod = capsule("2016-04-01T00:00:00Z","2016-05-01T00:00:00Z") //Cut the single continuous time series signal (Compressor Power) into sections which correspond to the different modes of operation. This gives us three intermediate time series signals which only contain data for the three distinct modes of operation. $highSeries = $series.within($high) $lowSeries = $series.within($low) $offSeries = $series.within($off) // Create three intermediate time series signals, one for each mode of operation. Find the average value of the time series signal during the reference time period for each mode of operation, and then turn that scalar into a time series signal which only exists in the appropriate mode of operation $highAve = $highSeries.average($refPeriod).tosignal().within($high) $lowAve = $lowSeries.average($refPeriod).tosignal().within($low) $offAve = $offSeries.average($refPeriod).tosignal().within($off) // Splice together the three time series signals into a single signal and step interpolate the $finalSeries $finalSeries = $highAve.splice($lowAve,$low,false).splice($offAve,$off,false).toStep() return $finalSeries Boundaries Using Formula To start, let's calculate the upper boundary as the average + 3 std dev. I can use the Formula tool to calculate this upper boundary using the following variables and syntax. Variables Name Item Type $Series Compressor Power Signal $High Compressor High Condition $Low Compressor Low Condition $Off Compressor Off Condition Formula $refPeriod = capsule("2016-04-01T00:00:00Z","2016-05-01T00:00:00Z") $highSeries = $series.within($high) $lowSeries = $series.within($low) $offSeries = $series.within($off) $highAve = $highSeries.average($refPeriod).tosignal().within($high) $highStdDev = $highSeries.standarddeviation($refPeriod).tosignal().within($high) $highBoundary = $highAve + $highStdDev*3 $lowAve = $lowSeries.average($refPeriod).tosignal().within($low) $lowStdDev = $lowSeries.standarddeviation($refPeriod).tosignal().within($low) $lowBoundary = $lowAve + $lowStdDev*3 $offAve = $offSeries.average($refPeriod).tosignal().within($off) $offStdDev = $offSeries.standarddeviation($refPeriod).tosignal().within($off) $offBoundary = $offAve + $offStdDev*3 $finalSeries = $highBoundary.splice($lowBoundary,$low,false).splice($offBoundary,$off,false).toStep() return $finalSeries Similarly, I can calculate the lower boundary as average - 3 std dev using the following variables and Formula syntax. Variables Name Item Type $Series Compressor Power Signal $High Compressor High Condition $Low Compressor Low Condition $Off Compressor Off Condition Formula $refPeriod = capsule("2016-04-01T00:00:00Z","2016-05-01T00:00:00Z") $highSeries = $series.within($high) $lowSeries = $series.within($low) $offSeries = $series.within($off) $highAve = $highSeries.average($refPeriod).tosignal().within($high) $highStdDev = $highSeries.standarddeviation($refPeriod).tosignal().within($high) $highBoundary = $highAve - $highStdDev*3 $lowAve = $lowSeries.average($refPeriod).tosignal().within($low) $lowStdDev = $lowSeries.standarddeviation($refPeriod).tosignal().within($low) $lowBoundary = $lowAve - $lowStdDev*3 $offAve = $offSeries.average($refPeriod).tosignal().within($off) $offStdDev = $offSeries.standarddeviation($refPeriod).tosignal().within($off) $offBoundary = $offAve - $offStdDev*3 $finalSeries = $highBoundary.splice($lowBoundary,$low,false).splice($offBoundary,$off,false).toStep() return $finalSeries Final Results Executing these 3 formulas results in 3 new time series signals: Average Compressor Power, Compressor Power +3sd and Compressor Power -3sd. The Customize menu in the Details Pane can be used to adjust how these signals are visualized on the screen: Content Verified DEC2023
×
×
  • Create New...